Course contents
Commutative algebra
Modules over a (commutative) ring and operations on modules; tensor product of modules. Localization of rings and modules. Artinian and Noetherian rings and modules; Krull dimension of a ring. Integral dependence. Spectrum of a ring; affine algebraic sets, Noether's normalization lemma and Hilbert's Nullstellensatz.
Number Theory
Algebraic numbers and algebraic integers. Number Fields.
Factorization in Dedekind domains and divisors. Ideal and class group.
Geometric representation of algebraic number. Dirichlet unity theorem. Galois theory for number fields.
Valuations Local fields. Introduction to the Minkowsky theory and Riemann Roch theorem.
Reccomended or required readings
Commutative algebra
M.F. Atiyah, I.G. MacDonald: "Introduzione all'algebra commutativa", Feltrinelli, 1981.
S. Bosch: "Algebraic Geometry and Commutative Algebra", Universitext, Springer, 2013.
I. Kaplanski: "Commutative Rings", University of Chicago Press, 1974.
H. Matsumura: "Commutative Ring Theory", Cambridge University Press, 1989.
Number Thory
-Jurgen Neukirch. Algebraic Number Theory, Grundleheren der mathematischen Wissenshaffen (322) Springer (1999).
-Serge Lang, Algebraic Number Theory, Graduate texts in mathematics Spinger (1986).
-Robert Ash . A Course in algebraic number theory, Dover Books In Mathematics (2010).
-Dispense fornite dal Docente .