

## Anno Accademico 2020/2021

| ANALOG COMMUNICATIONS |                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enrollment year       | 2019/2020                                                                                                                                                                                                                                                                                                                                                                  |
| Academic year         | 2020/2021                                                                                                                                                                                                                                                                                                                                                                  |
| Regulations           | DM270                                                                                                                                                                                                                                                                                                                                                                      |
| Academic discipline   | ING-INF/03 (TELECOMMUNICATIONS)                                                                                                                                                                                                                                                                                                                                            |
| Department            | DEPARTMENT OF ELECTRICAL, COMPUTER AND BIOMEDICAL ENGINEERING                                                                                                                                                                                                                                                                                                              |
| Course                | ELECTRONIC AND COMPUTER ENGINEERING                                                                                                                                                                                                                                                                                                                                        |
| Curriculum            | PERCORSO COMUNE                                                                                                                                                                                                                                                                                                                                                            |
| Year of study         | 2°                                                                                                                                                                                                                                                                                                                                                                         |
| Period                | 2nd semester (08/03/2021 - 14/06/2021)                                                                                                                                                                                                                                                                                                                                     |
| ECTS                  | 9                                                                                                                                                                                                                                                                                                                                                                          |
| Lesson hours          | 86 lesson hours                                                                                                                                                                                                                                                                                                                                                            |
| Language              | Italian                                                                                                                                                                                                                                                                                                                                                                    |
| Activity type         | WRITTEN AND ORAL TEST                                                                                                                                                                                                                                                                                                                                                      |
| Teacher               | GAMBA PAOLO ETTORE (titolare) - 8 ECTS<br>SAVAZZI PIETRO - 1 ECTS                                                                                                                                                                                                                                                                                                          |
| Prerequisites         | Knowledge acquired in previous courses in mathematics and circuit theory.                                                                                                                                                                                                                                                                                                  |
| Learning outcomes     | Knowledge of the frequency representation of a deterministic signal.<br>Understanding the concept of noise as a stochastic process. Knowledge<br>of the simplest techniques for transmitting information. Ability to analyze<br>deterministic signals and calculate fundamental properties (spectrum,<br>bandwidth, power/energy).                                         |
| Course contents       | Deterministic signals in the frequency domain Fourier series. Fourier<br>series in exponential form. Response of linear systems and properties<br>of transfer functions. Power and energy signals. Power spectral density<br>and energy. The Fourier transform. The convolution theorem. Parseval's<br>theorem. Correlation between waveforms. Auto correlation. Power and |

|                                  | cross correlation. Periodic autocorrelation functions.                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | Random variables and processes<br>Concept of probability, independent events, random variables.<br>Cumulative probability distribution, probability density function. Noise as<br>a stochastic process. Stationary processes. Ergodic processes.                                                                                                                                                                                                                                  |
|                                  | Amplitude modulation?<br>Baseband signal and carrier. Frequency translation. Detection of the<br>baseband signal. Amplitude modulation (DSB, DSB-SC SSB, VSB).<br>Spectrum of amplitude modulated signals. Modulators. Detectors.<br>Multiplexing.                                                                                                                                                                                                                                |
|                                  | Frequency modulation<br>Frequency and phase of a sinusoidal signal. The FM signal. Spectrum<br>of an FM signal with sinusoidal modulation. Wideband and narrowband<br>FM signals. Carson approximation of the bandwidth of a FM signal. FM<br>modulators and demodulators.                                                                                                                                                                                                        |
|                                  | Digital communication systems<br>Real and actual sampling and PAM signals., Quantization and PCM<br>signals. Representation of arbitrary digital signals using symbol<br>constellations. Baseband and radio frequency digital signals, and their<br>spectra.                                                                                                                                                                                                                      |
|                                  | Performance of communication systems? in the presence of noise<br>Signal to Noise Ratio. Comparison between AM and FM systems.<br>Probability of error in digital communications. Bit Error Rate for arbitrary<br>digital modulations.                                                                                                                                                                                                                                            |
| Teaching methods                 | Lectures (hours/year in lecture theatre): 50<br>Practical classes (hours/year in lecture theatre): 30<br>Workshops (hours/year in the lab): 0                                                                                                                                                                                                                                                                                                                                     |
|                                  | The lectures are given using slides, providing additional explanations<br>and examples at the backboard.<br>The practical classes consist in the solution of past written tests (or<br>portions of them), duly simplified according to the level of the students<br>during the course.                                                                                                                                                                                            |
| Reccomended or required readings | S. Haykin, M. Moher. Introduzione alle Telecomunicazioni Analogiche e Digitali. Casa Editrice Ambrosiana.                                                                                                                                                                                                                                                                                                                                                                         |
| Assessment methods               | The exam starts with a written test including two problems and one<br>open question about all the topics of the course. Additionally, a<br>mandatory oral examination will sum up to the final result. Only a score<br>higher than 11/30 in the written test grants the access to the oral<br>examination. The total score is a weighted average of the results of the<br>written and oral tests. The minimum score to pass the exam is 18, while<br>the maximum is 30 cum laude. |
| Further information              | The exam starts with a written test including two problems and one open question about all the topics of the course. Additionally, a                                                                                                                                                                                                                                                                                                                                              |

mandatory oral examination will sum up to the final result. Only a score higher than 11/30 in the written test grants the access to the oral examination. The total score is a weighted average of the results of the written and oral tests. The minimum score to pass the exam is 18, while the maximum is 30 cum laude. Sustainable development <u>\$lbl legenda sviluppo sostenibile</u>

goals - Agenda 2030