

Anno Accademico 2020/2021

COMPUTATIONAL FLUID DYNAMICS	
Enrollment year	2019/2020
Academic year	2020/2021
Regulations	DM270
Academic discipline	ICAR/01 (HYDRAULICS)
Department	DEPARTMENT OF CIVIL ENGINEERING AND ARCHITECTURE
Course	ENVIRONMENTAL ENGINEERING
Curriculum	PERCORSO COMUNE
Year of study	2°
Period	2nd semester (08/03/2021 - 14/06/2021)
ECTS	6
Lesson hours	51 lesson hours
Language	English
Activity type	ORAL TEST
Teacher	SIBILLA STEFANO (titolare) - 4 ECTS FENOCCHI ANDREA - 2 ECTS
Prerequisites	Basic knowledge in Fluid Mechanics and Numerical Analysis
Learning outcomes	The course is intended to give to the student a basic knowledge of the numerical methods applied to the hydraulic and fluid dynamic analysis, learning to apply them with awareness, also through the use of dedicated software.
Course contents	Equations of fluid mechanics Conservation of mass and momentum. Euler equations. Navier-Stokes equations. Discretization methods Finite Differences method. Accuracy, stability and numerical diffusion. Finite volumes method. Evaluation of flux terms.

Numerical solution of the Navier-Stokes equations

Linearization methods for the convective terms. Projection methods for the solution of the equations of motion of incompressible fluids. SIMPLE and PISO methods. Treatment of the free surface in Eulerian schemes: the VoF (Volume of Fluid) method.

Turbulence modelling

Turbulent flow theory. Reynolds-averaged equations. Turbulent kinetic energy and its dissipation. The k-epsilon method.

Smoothed Particle Hydrodynamics

Numerical techniques in a Lagrangian frame. Kerner approximation and particle approximation. SPH solution of the Navier-Stokes equations. Enforcement of boundary conditions.

Teaching methods

Lectures and practical classes with use of CFD software

Reccomended or required readings

J.H. Ferziger, M. Peric. Computational methods for fluid dynamics. Springer.

Assessment methods

The exam will consit in the discussion of a report, describing the simulations realized during the course

Further information

Sustainable development goals - Agenda 2030

\$lbl_legenda_sviluppo_sostenibile