

## Anno Accademico 2020/2021

| HYDRAULICS                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enrollment year                  | 2019/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Academic year                    | 2020/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Regulations                      | DM270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Department                       | DEPARTMENT OF CIVIL ENGINEERING AND ARCHITECTURE                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Course                           | CIVIL AND ENVIRONMENTAL ENGINEERING                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Curriculum                       | PERCORSO COMUNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Year of study                    | 2°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Period                           | Annual (28/09/2020 - 14/06/2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ECTS                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Language                         | Italian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Prerequisites                    | Fundamentals of calculus (limits, derivatives, integrals), mechanics (equilibrium, energy, conservation principles), vector calculus.                                                                                                                                                                                                                                                                                                                                                    |
| Learning outcomes                | The Course teaches the fundamental aspects of hydraulics, in order to tackle the main hydraulic issues in the coputation of pipe and open-channel flows in steady-state conditions.                                                                                                                                                                                                                                                                                                      |
| Course contents                  | The Course plans to teach the fundamentals in hydraulics which are<br>needed to tackle the main practical problems in pipe and open-channel<br>flows.<br>In this frame, the Course consists of two parts: in the introductory part,<br>all the basic knowledge in fluid dynamics and in the hydraulics of pipe<br>flows is explained; in the second part, the focus is on open-channel<br>hydraulics and on the computation of the free-surface elevation in<br>steady state conditions. |
| Teaching methods                 | Lectures, practical classes and laboratory classes                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Reccomended or required readings | Gallati M., Sibilla S Fondamenti di Idraulica. Carocci editore, Roma.<br>Citrini D., Noseda D Idraulica. Tamburini, Milano.                                                                                                                                                                                                                                                                                                                                                              |
| Assessment methods               | Two separate written tests on the contents of the two parts of the Course                                                                                                                                                                                                                                                                                                                                                                                                                |

502543 - FUNDAMENTALS OF HYDRAULICS

502938 - APPLIED HYDRAULICS



## Anno Accademico 2020/2021

|                     | FUNDAMENTALS OF HYDRAULICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enrollment year     | 2019/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Academic year       | 2020/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Regulations         | DM270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Academic discipline | ICAR/01 (HYDRAULICS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Department          | DEPARTMENT OF CIVIL ENGINEERING AND ARCHITECTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Course              | CIVIL AND ENVIRONMENTAL ENGINEERING                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Curriculum          | PERCORSO COMUNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Year of study       | 2°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Period              | 1st semester (28/09/2020 - 22/01/2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ECTS                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lesson hours        | 52 lesson hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Language            | Italian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Activity type       | WRITTEN TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Teacher             | SIBILLA STEFANO (titolare) - 5 ECTS<br>FENOCCHI ANDREA - 1 ECTS                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Prerequisites       | Fundamentals of calculus: limits, derivatives, integrals. Mechanics:<br>equilibrium, energy, conservation principles. Analytical mechanics:<br>vector calculus.                                                                                                                                                                                                                                                                                                                                           |
| Learning outcomes   | At the end of the Course, the student should know and understand the<br>basic principles which regulate the liquid motion in pipes and open<br>channels. He must also be able to apply these principles to the solution<br>of simple hydraulic engineering problems, such as the evaluation of the<br>force exerted by the liquid on the rigid walls, the determination of<br>discharge and head losses in pipe flows, the evaluation of energy<br>exchanges between liquid flows and hydraulic machines. |
| Course contents     | Fluids as a continuum. Pressure and viscous stress.<br>Hydrostatics: Stevin's Law and pressure distribution in liquids.<br>Preassure measurement. Hydrostatic forces on plane and curved walls.                                                                                                                                                                                                                                                                                                           |

|                                                | Kinematics of liquids: Eulerian and Lagrangian point of view. Definition of flow lines, fluxes, flow rate and mean velocity.                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                | Hydrodynamics: conservation principles. Continuity equation and Bernoulli's Theorem.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                | Head losses: laminar and turbulent flows. Pipe flows: smooth wall and roughness, Moody's chart. Effects of geometry variation. Valves.                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                | Hydraulic machines: pumps and turbines. Typical layout of hydropower plants.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Teaching methods                               | Lectures and practical classes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Reccomended or required readings               | Gallati M., Sibilla S Fondamenti di Idraulica. Carocci editore, Roma.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                | Citrini D., Noseda D Idraulica. Tamburini, Milano.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Assessment methods                             | The evaluation will be obtained through a written test, which will include<br>in general the solution of two exercises, the first on the evaluation of<br>hydrostatic forces and the second on the solution of a problem on pipe<br>flows (e.g.: determination of the flow rate and of head losses, energy<br>exchanges in hydropower or pumping plants, etc.)<br>The test will last for 2 hours: the use of textbooks, tables and computing<br>machines is allowed.<br>The evaluation will be given in a 0-30 grade scale. |
| Further information                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sustainable development<br>goals - Agenda 2030 | <u>\$Ibl_legenda_sviluppo_sostenibile_</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



## Anno Accademico 2020/2021

| APPLIED HYDRAULICS  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enrollment year     | 2019/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Academic year       | 2020/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Regulations         | DM270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Academic discipline | ICAR/01 (HYDRAULICS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Department          | DEPARTMENT OF CIVIL ENGINEERING AND ARCHITECTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Course              | CIVIL AND ENVIRONMENTAL ENGINEERING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Curriculum          | PERCORSO COMUNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Year of study       | 2°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Period              | 2nd semester (08/03/2021 - 14/06/2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ECTS                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lesson hours        | 51 lesson hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Language            | Italian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Activity type       | WRITTEN TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Teacher             | SIBILLA STEFANO (titolare) - 3 ECTS<br>PERSI ELISABETTA - 3 ECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Prerequisites       | Mathematical Analysis: functions of one or more real variables, limits,<br>derivatives, integrals. Physics: measurement of physical quantities and<br>units of measure. Principles and fundamental equations of mechanics.<br>Energy. The energy conservation principle. Mathematical physics:<br>scalars and vectors. Fundamental elements of vector calculus.<br>Geometry of the masses.                                                                                                                                                |
| Learning outcomes   | The "Applied Hydraulic" is the second module of "Hydraulics" course.<br>In the "Applird Hydraulic" module, the student must acquire the<br>concepts and operational tools needed to solve the hydraulic problems<br>of steady motion in free surface flows running into artificial channels.<br>The student must be able to qualitatively and numerically sketch the<br>free surface profiles in natural or artificial open channels as a function of<br>the boundary conditions which characterize the flow and of any<br>singularities. |

| Course contents                  | Flow basic notions: the flow concept. Flow spatial and temporal characteristics. Continuity equations and momentum equations.                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | Free surface flows geometrical characteristics<br>Geometrical characteristics of free surface flows for cross section.<br>Geometrical characteristics of free surface flows for longitudinal profiles.<br>Representation of natural open channels geometry.                                                                                                                                                                                                                           |
|                                  | Normal flow in free surface flow<br>Normal flow. Free surface flow resistance and roughness coefficients.<br>Flow rate versus normal depth. Flow rate versus normal depth for<br>closed sections. Flow rate versus normal depth for composed sections.<br>Verification and design problem under the condition of normal flow:<br>graphical methods (specific and normalized flow rate versus normal<br>depth) and numerical method (Bisection). Unstable normal flow (rapid<br>flow). |
|                                  | Free surface flows energetic characteristics<br>Specific-energy considerations. Water depth versus specific-energy with<br>constant flow rate. Flow rate versus water depth with constant<br>specific-energy. Critical state. Open channel flow: mild, critical and<br>steep slope.                                                                                                                                                                                                   |
|                                  | General considerations for the profiles of gradually varied flow<br>Gradually varied flow equation.<br>Gradually varied flow for five classes of channel slope (mild, critical,<br>steep, horizontal and adverse), showing basic solution curves. Control<br>sections.                                                                                                                                                                                                                |
|                                  | Composite-flow profiles: solution curves between two regimes<br>Passing through the critical depth. Hydraulic jump. Total force. Water<br>depth versus total force with constant flow rate. Flow rate versus water<br>depth with constant total force. Hydraulic jump placement.                                                                                                                                                                                                      |
|                                  | Backwater profiles<br>Backwater concept and its upstream/downstream propagation.<br>Integration of the steady gradually varied flow equations in prismatic<br>channel.                                                                                                                                                                                                                                                                                                                |
|                                  | Open channel flow singularity<br>Abruptly varied flow considerations. Characteristic scale (singularities<br>scale and scale of steady flow profile). Properly filleted steps on the<br>bottom. Flow measurement and control by weirs. Flow over wide weirs.<br>Filleted and abrupt lateral contractions. Hydraulic jump modeler:<br>sharp-crested weirs/ broad-crested weirs. Backwater caused by the<br>bridge piers.                                                               |
| Teaching methods                 | Lessons (hours per year in the classroom): 34<br>Exercises (hours per year in the classroom): 18                                                                                                                                                                                                                                                                                                                                                                                      |
| Reccomended or required readings | The lesson slides and the exercises solutions are available on KIRO<br>Platform.<br>Further investigations are available in:                                                                                                                                                                                                                                                                                                                                                          |

|                                                | Citrini D., Noseda D. "Idraulica" Tamburini, Milano<br>AA.VV. "Sistemi di fognatura-Manuale di progettazione" (Capitolo 12),<br>CSDU-Hoepli                                                                                                                                                  |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assessment methods                             | The exam of "Applied Hydraulic" will be held in a written form. The positive result of the test (vote equal or greater than 18/30), if accepted by the student, will be used, with the result of the exam of "Hydraulics Fundaments", for the final result of the Cours "Hydraulics" course. |
| Further information                            | ==                                                                                                                                                                                                                                                                                           |
| Sustainable development<br>goals - Agenda 2030 | <u>\$lbl_legenda_sviluppo_sostenibile_</u>                                                                                                                                                                                                                                                   |