

Anno Accademico 2019/2020

PHYSICS II	
Enrollment year	2018/2019
Academic year	2019/2020
Regulations	DM270
Academic discipline	FIS/03 (MATERIAL PHYSICS)
Department	DEPARTMENT OF ELECTRICAL, COMPUTER AND BIOMEDICAL ENGINEERING
Course	INDUSTRIAL ENGINEERING
Curriculum	Energia
Year of study	2°
Period	1st semester (30/09/2019 - 20/01/2020)
ECTS	6
Lesson hours	50 lesson hours
Language	Italian
Activity type	WRITTEN AND ORAL TEST
Teacher	BAJONI DANIELE (titolare) - 6 ECTS
Prerequisites	Student's are supposed to be familiar with the basic concepts Mechanics (Newton's Laws, cinematics, Energy and Momentum conservation principles and Thermodynamics), Mathematical Analysis (Module A and B) and Geometry
Learning outcomes	The aim of the course is to introduce the basic concepts of Electromagnetism.
Course contents	Electric Charge: phenomenology. Coulomb's Law, Superimposition Principle Electric Field Electric Flux, Gauss Law
	Electric Field

Maxwell's Equation for the Electrostatics

Electric Field in the Matter

Behaviour of Conductors in presence of an Electrostatic Field

Capacitance

Electric Dipole

Dielectrics and Polarization (microscopic and macroscopic description)

boundary conditions for E and D fields

Electric Current

Drude model of Electrical Conduction

Ohm's Law, Resistance

Charge Conservation Principle, Continuity Equation

Kirchhoff laws

RC circuits

Magnetostatic

Phenomenology of Magnetism

Gauss Law for Magnetic Field

Charge in motion in a Magnetic Field, Lorentz Force

Biot-Savart Law

Ampere's Law

Magnetic Fields in the matter

Phenomenological consideration

Dia- Para- and Ferro-Magnetism

M and H vectors

Ampere's Law for H field

Electromagnets and Hysteresis Cycle

Non-Stationary Fields

Faraday's Law of Induction, non-conservative Fields

Displacement current and Ampler-Maxwell equation

Energy of the magnetic field, Inductance

RL circuits

Maxwell Equations in non-stationary conditions

Introduction to Electromagnetic Waves

Electromagnetic wave's equation

Plane wave solution

Properties of the pane waves

Poynting Vector

Teaching methods

Lectures (hours/year in lecture theatre): 38

Practical class (hours/year in lecture theatre): 12

Reccomended or required

There are many beautiful books treating all the arguments presented in

readings	this course, especially in English. Just to mention some of them
	Giancoli, D. C Physics for Scientists & Engineers. Vol. 2. Prentice Hall.
	Serway and Jewett. Physics for Scientists and Engineers 6E.
	Paul Tipler. Physics for Scientists and Engineers: Vol. 2: Electricity and Magnetism, Light .
	E. Purcell. Electricity and Magnetism (Berkeley Physics Course, Vol. 2).
Assessment methods	The first part of the exam will test the student's ability in solution of problems (script: 6 problems/2 hours). The oral part of the exam is not compulsory. More information (in italian) are available in the official website of the course.
Further information	The first part of the exam will test the student's ability in solution of problems (script: 6 problems/2 hours). The oral part of the exam is not compulsory. More information (in italian) are available in the official website of the course.
Sustainable development goals - Agenda 2030	\$Ibl legenda sviluppo sostenibile