MATHEMATICAL METHODS
Stampa
Enrollment year
2017/2018
Academic year
2018/2019
Regulations
DM270
Academic discipline
MAT/05 (MATHEMATICAL ANALYSIS)
Department
DEPARTMENT OF ELECTRICAL,COMPUTER AND BIOMEDICAL ENGINEERING
Course
INDUSTRIAL ENGINEERING
Curriculum
Energia
Year of study
Period
1st semester (01/10/2018 - 18/01/2019)
ECTS
6
Lesson hours
60 lesson hours
Language
Italian
Activity type
WRITTEN AND ORAL TEST
Teacher
GIANAZZA UGO PIETRO (titolare) - 5 ECTS
VENERONI MARCO - 1 ECTS
Prerequisites
Differential and integral calculus for scalar and vector functions, matrices and linear transformations, sequences and series, power series in the real line, complex numbers, polar coordinates.
Learning outcomes
Learn how to work with complex variable functions, evaluate integrals of holomorphic functions, manipulate power and Fourier series, adopt the point of view of signal theory, calculate and operate with Fourier, Laplace and Zeta transforms, solve simple ordinary differential equations with constant coefficients, understand convolutions.
Course contents
Complex variable functions
Manipulation of complex numbers
Rational, exponential, and trigonometric functions, logarithms
Power series
Conplex derivatives, holomorphic functions, Cauchy-Riemann conditions
Contour integrals, Cauchy theorem, analyticity of olomorphic functions
Singularities, Laurent series, residue formula
Evaluation of integrals, Jordan lemma

The language of signals
Continuous and discrete signals.
Basic operations on signals: sum and linear combinations of signals, traslation and rescalings.
Scalar products and norms.

Z trasform
Definition and simple examples
Simple applications to difference equations

Fourier series
Periodic signals, trigonometric and exponential functions, Fourier series.
Pointwise and energy convergence, Gibbs phenomenon.
Parseval identity
Applications

Fourier Transform
Definition of Fourier transform, relationships with Fourier series, elementary properties
Riemann-Lebesgue lemma
Inversion theorem for piecewise regular functions
Plancherel identity, Fourier transform for L^2 functions

Laplace transform
Definition, links with the Fourier transform, main properties
Inversion of Laplace transform, residue and Heaviside formula
Application to simple ordinary differential equations
Convolution
Definition and simple example of convolutions
Links with Fourier and Laplace transform
Simple applications to differential equations
Teaching methods
The course is divided into lessons (on the blackboard, supplemented by transparencies) and exercises on the blackboard.
During the lessons the main results, their scope of validity, the mutual relations, and the most relevant applications are presented and discussed.
The exercises are aimed at acquiring the main calculation techniques and the most elaborate strategies for solving problems, in the context of the theoretical results already acquired. Part of the exercises is also addressed to the solution of the written exams of the previous years.
Reccomended or required readings
M. Codegone. Metodi Matematici per l'Ingegneria. Zanichelli.

M. Giaquinta, G. Modica. Note di Metodi Matematici per Ingegneria Informatica. Pitagora, Bologna.

F. Tomarelli. Metodi Matematici per l'Ingegneria. CLU.
Assessment methods
The exam consists of a written examination and an optional oral examination: the written examination is further divided into two parts: exercises (first part) and theoretical questions (second part). Written and optional oral examinations must be passed within the same session. The oral examination is based on definitions, examples and counterexamples, theorems (some with proofs).
Further information
Sustainable development goals - Agenda 2030