

Anno Accademico 2016/2017

	MODELS OF BIOLOGICAL SYSTEMS
Enrollment year	2014/2015
Academic year	2016/2017
Regulations	DM270
Academic discipline	ING-INF/06 (ELECTRONIC AND INFORMATION BIOENGINEERING)
Department	DEPARTMENT OF ELECTRICAL, COMPUTER AND BIOMEDICAL ENGINEERING
Course	ELECTRONIC AND COMPUTER ENGINEERING
Curriculum	INFORMATICA
Year of study	3°
Period	2nd semester (01/03/2017 - 09/06/2017)
ECTS	6
Lesson hours	78 lesson hours
Language	ITALIAN
Activity type	WRITTEN AND ORAL TEST
Teacher	MAGNI PAOLO (titolare) - 6 ECTS
Prerequisites	Elements of dynamic models and statistics
Learning outcomes	=
Course contents	Introduction to mathematical modelling
	Compartment models
	Elements of Pharmacokinetics
	Tracer experiments
	A priori identifiability
	Parametric estimation

	Case studies
	Advanced techniques such as deconvolution, population modeling, optimal design
	Hands-on
Teaching methods	Lectures (hours/year in lecture theatre): 36 Practical class (hours/year in lecture theatre): 0 Practicals / Workshops (hours/year in lecture theatre): 24
Reccomended or required readings	Slides. The course is in italian E. Carson, C. Cobelli. Modelling metodology for physiology and medicine (2nd edition). Elsevier.
Assessment methods	Oral examination inlcuding hand-on discussion
Further information	Oral examination inlcuding hand-on discussion
Sustainable development goals - Agenda 2030	<u>\$Ibl_legenda_sviluppo_sostenibile_</u>