GEOMETRIA 1
Stampa
Anno immatricolazione
2020/2021
Anno offerta
2020/2021
Normativa
DM270
SSD
MAT/03 (GEOMETRIA)
Dipartimento
DIPARTIMENTO DI MATEMATICA 'FELICE CASORATI'
Corso di studio
MATEMATICA
Curriculum
PERCORSO COMUNE
Anno di corso
Periodo didattico
Secondo Semestre (01/03/2021 - 11/06/2021)
Crediti
9
Ore
84 ore di attività frontale
Lingua insegnamento
Italiano
Tipo esame
SCRITTO E ORALE CONGIUNTI
Docente
STOPPINO LIDIA (titolare) - 9 CFU
Prerequisiti
Un corso di Analisi 1 e un corso di Algebra lineare
Obiettivi formativi
Il corso si propone di introdurre gli studenti alle nozioni di base della topologia generale e della geometria affine e proiettiva. Gli obiettivi di apprendimento del corso sono che gli studenti capiscano le strutture e le proprietà di base della topologia generale (aperti, chiusi, intorni, continuità, assiomi di numerabilità e di separazione, topologia di sottospazio, topologia prodotto, topologia quoziente, connessione, compattezza, successioni e compattezza in spazi metrici) e della geometria affine, euclidea e proiettiva di base e sappiano svolgere esercizi di verifica di tali concetti e proprietà su esempi concreti.
Programma e contenuti
Geometria affine, euclidea e proiettiva:
Spazi affini e affinità. Sottospazi affini e giacitura.
Teorema di Talete, Pappo e Desargues.
Proprietà affini. Formula di Grassmann.
Geometria affine in dimensione 2 e 3.
Geometria euclidea. Isometrie. Proprietà euclidee (congruenza).
Proiezioni. Teorema di Cartan-Dieudonné.
Introduzione alla geometria proiettiva. Motivazioni storiche.
Spazio proiettivo associato a uno spazio vettoriale (su un campo qualunque, ma con particolare riferimento al campo reale);
sottospazi proiettivi; formula di Grassmann; coordinate omogenee.
Coordinate affini nello spazio proiettivo.
Teorema di Pappo proiettivo.
Proiezione da un punto.
Cenni sulla dualità. Autodualità di Pappo.Teorema di Desargues.
Proiettività; proprietà proiettive.
Curve algebriche affini e proiettive.
Coniche; classificazioni proiettiva e affine.
Cenni alle quadriche.

Topologia generale.
Spazi metrici e continuità. Mertriche equivalenti. Proprietà degli aperti.
Spazi topologici; aperti, chiusi, intorni e nozioni collegate.
Lo spazio topologico associato ad uno spazi metrico: topologia metrizzabile.
Basi di uno spazio topologico. Lemma della base.
Sistema fondamentale di intorni.
Assiomi di numerabilità.
Successioni a valori in uno spazio topologico.
Classificazione dei punti (parte interna, chiusura, frontiera di un sottoinsieme)
Funzioni continue tra spazi topologici.
Assiomi di separazione: spazi di Hausdorff o T2; spazi T0, T1, T3 e T4.
Topologia di sottospazio. Immersioni.
Prodotto di spazi topologici. Base canonica.
Topologia quoziente. Quoziente di uno spazio topologico modulo una relazione di equivalenza.
Spazi regolari, normali e loro proprietà.
Lemma di Urysohn e teorema di metrizzabilità di Uryshon.
Spazi compatti; compattezza e applicazioni continue. Teorema di Tychonoff.
Caratterizzazione della compattezza per gli spazi metrici. Compattezza per successioni.
Successioni di Cauchy. Completezza; estensione del teorema di Heine-Borel.
Cenni al completamento di uno spazio metrico. Cenni alla costruzione dei reali come completamento dei razionali.
Spazi connessi; connessione e applicazioni continue. Connessione per archi. Componenti connesse e componenti connesse per archi.
Metodi didattici
Lezioni frontali, esercitazioni e tutorato.
Testi di riferimento
Per la geometria:
- E. Sernesi, Geometria 1, seconda edizione, Bollati Boringhieri, Torino 2000,
- E. Fortuna, R. Frigerio, R. Pardini, Geometria Proiettiva, Esercizi e richiami di teoria, Springer Milano, 2011

Per la topologia:
E. Sernesi, Geometria 2, seconda edizione, Bollati Boringhieri, 2000
- M. Manetti, Topologia, seconda edizione, Springer, Milano 2014.
- C. Kosniowski, Introduzione alla topologia algebrica, Zanichelli, Bologna 1988
- L. Steen and J. A. Seebach, Counterexamples in Topology (1970, 2nd ed. 1978) (la bibbia dei controesempi topolgici, con esempi di spazi con le più bizzarre topologie possibili)
- J. Munkres, Topology, 2nd edition, Pearson (in inglese)
Modalità verifica apprendimento
l'esame consta di una parte scritta e una orale, da svolgersi nello stesso appello. Il programma su cui si basa l'esame è quello dell'ultimo anno accademico in corso. Non si possono consultare libri o appunti o altro materiale durante lo scritto. L'esame orale si svolgerà di norma entro un paio di settimane dallo scritto. L'orale parte di regola dalla discussione dell’elaborato scritto, seguito da domande di teoria e/o da semplici esercizi. Per essere ammessi alla prova orale è necessario aver ottenuto un punteggio di almeno 15/30 nella prova scritta. Gli orali sono pubblici e si svolgono di regola alla lavagna.
Altre informazioni
Più informazioni si trovano sul sito della docente: www.stoppino.it
Obiettivi Agenda 2030 per lo sviluppo sostenibile