SISTEMI DINAMICI: TEORIA E METODI NUMERICI
Stampa
Anno immatricolazione
2019/2020
Anno offerta
2019/2020
Normativa
DM270
SSD
MAT/08 (ANALISI NUMERICA)
Dipartimento
DIPARTIMENTO DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE
Corso di studio
BIOINGEGNERIA
Curriculum
Sensoristica e strumentazione biomedica
Anno di corso
Periodo didattico
Primo Semestre (30/09/2019 - 20/01/2020)
Crediti
6
Ore
56 ore di attività frontale
Lingua insegnamento
ITALIANO
Tipo esame
SCRITTO E ORALE CONGIUNTI
Docente
PAVARINO LUCA FRANCO (titolare) - 6 CFU
Prerequisiti
Calcolo differenziale e integrale per funzioni di piu` variabili, numeri complessi, calcolo vettoriale e matriciale. Programmazione in linguaggio MATLAB
Obiettivi formativi
L’insegnamento si compone di due moduli: Sistemi dinamici: teoria e metodi numerici ( 6 crediti) e Metodi agli elementi finiti e applicazioni (3 crediti).
Sistemi dinamici: teoria e metodi numerici.
Il modulo si propone di fornire allo studente le nozioni di base relative alle proprietà qualitative ed al comportamento asintotico delle soluzioni di sistemi di equazioni differenziali ordinarie. Si svilupperanno i principali metodi numerici per la simulazione di sistemi dinamici in modo che lo studente acquisisca le competenze necessarie per un loro utilizzo critico nella simulazione quantitativa di sistemi dinamici. Lo studente applicherà gli strumenti analitici e numerici all’analisi di alcuni tipici modelli relativi alla dinamica delle popolazioni, ai sistemi bistabili ed alla dinamica di oscillatori.
Programma e contenuti
SISTEMI DINAMICI: teoria e metodi numerici
Richiamo di nozioni di base
Spazi vettoriali, matrici, autovalori, equazioni differenziali lineari, calcolo differenziale, integrale e sviluppo di Taylor.
Introduzione ai problemi differenziali
Problemi ai valori iniziali (PVI), PVI in forma normale, probleimi ai limiti e differenziali-algebrici. Riduzione di un PVI ad un sistemi differenziale del primo ordine. Sistemi autonomi. Traiettorie, orbite. Risolubilitá di un problema ai valori iniziali . Esistenza locale di un PVI e prolungamento massimale. Esempi. Unicita`, esitenza globale e dipendenza continua dal dato iniziale. Dipendenza continua della soluzione dai paarmetri, sistema di sensitivita`. Formulazione integrale di un PVI.
Stabilita` asintotica
Stabilita` asintotica di una soluzione di un PVI. Stabilita` di punti di equilibrio. Sistemi lineari. Stabilita` di sistemi autonomi. Sistemi autonomi non lineari: stabilita` per linearizzazione. Punti iperbolici. Funzioni di Liapunov e stabilita`. Traiettorie periodiche e cicli limite. Sistemi autonomi di dimensione due:classificazione stabilita` punti di equilibrio e struttura orbite.
Nozioni di base di analisi numerica
Interpolazione polinomiale, formule di quadratura, metodo delle approssimazioni successive e metodo di Newton
Metodi numerici per sistemi di equazioni differenziali ordinarie
Metodi ad un passo e metodi lineari Multistep: ordine, convergenza e stabilita`. Metodi di Runge-Kutta basti su quadrature o sul metodo di collocazione. Costruzione metodi multistep di: Adams Bashforth , Moulton , Predictor-Corrector e Backwords Differentiation Formulae (BDF). Stima dell'errore locale di discretizzazione e strategia adattativa per il controllo del passo di integrazione.
Introduzione alla teoria della biforcazione relativa a punti di equilibrio ed a cicli limite
Analisi e simulazione di sistemi dinamici: modelli di tipo Lotka-Volterra , modelli bistabili di FitzHigh-Nagumo.
Metodi didattici
Lezioni frontali +
Esercitazioni con software MATLAB e xppaut
Testi di riferimento
F. Verhulst. Nonlinear differential equations and dynamical systems. Springer-Verlag,Heidelberg, 2006.

R. Mattheij, J. Molenaar.
Ordinary differential equations in theory and practice. SIAM, Philadelphia, 2002.

A. Quarteroni, R. Sacco, F. Saleri. Matematica Numerica. Springer 3ra ed., 2008.

A.M. Stuart , A.R. Humphries. Dynamical Systems and Numerical Analysis. Cambridge University Press 1998.
Modalità verifica apprendimento
Modulo di Sistemi Dinamici.
Esame scritto sugli argomenti del programma dettagliato. Orale facoltativo con discussione ed interpretazione dei risultati delle esercitazioni e delle simulazioni sviluppate in course.
Altre informazioni