QUANTUM ELECTRONICS
Stampa
Anno immatricolazione
2019/2020
Anno offerta
2019/2020
Normativa
DM270
SSD
FIS/03 (FISICA DELLA MATERIA)
Dipartimento
DIPARTIMENTO DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE
Corso di studio
ELECTRONIC ENGINEERING
Curriculum
Photonics
Anno di corso
Periodo didattico
Primo Semestre (30/09/2019 - 20/01/2020)
Crediti
6
Ore
48 ore di attività frontale
Lingua insegnamento
English
Tipo esame
SCRITTO E ORALE CONGIUNTI
Docente
PIRZIO FEDERICO (titolare) - 6 CFU
Prerequisiti
The Mathematical and Physical concepts given by the 1st Level Degree (Mechanics and Electromagnetism, Geometry and Algebra, Mathematical Methods courses). The concepts illustrated in the course of “Fotonica” (Photonics) are important but not essential
Obiettivi formativi
The aim of the course is to give a correct quantum-mechanical description of the radiation-matter interaction and provide the physical tool necessary to understand the functioning of LASERs. At the end of the course, the students should possess the basic concepts of Quantum Mechanics, the main aspects of the radiaton-matter interaction and should be able to qualitatively and quantitatively describe the functioning of a LASER oscillator.
Programma e contenuti
Wave-particle duality, experimental facts
Quantum Mechanics Postulates, Schrödinger Equation
Eigenvalue problems, some examples of representative potentials
Angular momentum, Hydrogen Atom and Periodic Table of Elements
Identical Particles, Spin, Fermions and Bosons Statistics
Time Independent Perturbation Theory
Time Dependent Potentials, Perturbative method
Electric Dipole interaction
Fermi Golden Rule
Absorption, Spontaneous and Stimulated Emission, Einstein’s A and B coefficients
Density Matrix, radiation-matter interaction
3- and 4-levels systems, rate equations
Optical resonators
Free running laser operation
Q-Switching and Mode-Locking regimes
Some representative example of lasers (Gas lasers, Solid-state lasers, Fiber Lasers, Semiconductor Lasers)
Metodi didattici
Lectures (hours/year in lecture theatre, blackboard + slides): 44
Practical class (hours/year in lecture theatre): 2
Practicals / Workshops (hours/year in lab): 2
Testi di riferimento
There are many wonderful books about the topics we will cover in this Course. A lot of them are available at the Faculty Library. I will not follow a specific textbook, but students can refer to:

A. Yariv. Quantum Electronics. Wiley.

D. J. Griffiths. Introduction to Quantum Mechanics (2nd Edition). Pearson Prentice Hall.

C.L. Tang. Fundamentals of quantum mechanics, for solid state electronics and optics. Cambridge University Press.

W. Koechner. Solid.State Laser Engineering (6th Edition). Springer. This book can be considered the "Holy Bible" of solid-state lasers Engineers.
Modalità verifica apprendimento
The final exam will consist of an oral discussion about the topics introduced during the course. The student will select a specific topic to start from among those presented during classes. During the exam, the Teacher will evaluate the general knowledge of the matter and will verify the effective level of understanding of the main topics covered in the course. The final mark will be depending also on the ability of the student present the concepts and to make use of a correct scientific language.
Altre informazioni
The final exam will consist of an oral discussion about the topics introduced during the course. The student will select a specific topic to start from among those presented during classes. During the exam, the Teacher will evaluate the general knowledge of the matter and will verify the effective level of understanding of the main topics covered in the course. The final mark will be depending also on the ability of the student present the concepts and to make use of a correct scientific language.