

Anno Accademico 2021/2022

INTRODUCTION TO QUANTUM MECHANICS	
Enrollment year	2021/2022
Academic year	2021/2022
Regulations	DM270
Academic discipline	FIS/03 (MATERIAL PHYSICS)
Department	DEPARTMENT OF ELECTRICAL, COMPUTER AND BIOMEDICAL ENGINEERING
Course	ELECTRONIC ENGINEERING
Curriculum	Microelectronics
Year of study	1°
Period	1st semester (27/09/2021 - 21/01/2022)
ECTS	3
Lesson hours	23 lesson hours
Language	English
Activity type	ORAL TEST
Teacher	BAJONI DANIELE (titolare) - 6 ECTS
Prerequisites	- Classical Mechanics - Classical Electromagnetism - Calculus
Learning outcomes	Basic understanting of quantum mechanics and quantum technologies
Course contents	Introduction to Quantum Mechanics:
	The crysis of classical physics. Shroedinger equation. The wavefunction, statistical distributions. Simple systems in 1D: quantum well, tunneling, harmonic oscillator. 3D Shroedinger equation, the hydrogen atom. Dirac formalism, Hermitian operators, time evolution. Heisenberg uncertainty principle.

Crystals, Bloch theorem.

Tight binding model, band and band gaps.

Introduction to Quantum Technologies:

Brief Introduction to statistical mechanics

The Qubit

Entanglement

Quantum Key Distribution

Quantum Teleportation

Quantum Computing

Teaching methods

oral lectures

Reccomended or required readings

Griffiths, "Introduction to Quantum mechanics"

Assessment methods

Questions aiming at understanding which are the concepts acquired by the student and his/her ability to explain the topics discussed in the course. The minimum score to pass the exam is 18/30, the maximum score is 30/30 cum laude. The student will be required to answer the questions in either written or oral form.

Further information

Questions aiming at understanding which are the concepts acquired by the student and his/her ability to explain the topics discussed in the course. The minimum score to pass the exam is 18/30, the maximum score is 30/30 cum laude. The student will be required to answer the questions in either written or oral form.

Sustainable development goals - Agenda 2030

\$lbl_legenda_sviluppo_sostenibile