ANALISI MATEMATICA 2
Stampa
Anno immatricolazione
2022/2023
Anno offerta
2022/2023
Normativa
DM270
SSD
MAT/05 (ANALISI MATEMATICA)
Dipartimento
DIPARTIMENTO DI MATEMATICA 'FELICE CASORATI'
Corso di studio
MATEMATICA
Curriculum
PERCORSO COMUNE
Anno di corso
Periodo didattico
Secondo Semestre (01/03/2023 - 09/06/2023)
Crediti
9
Ore
84 ore di attività frontale
Lingua insegnamento
Italiano
Tipo esame
SCRITTO E ORALE CONGIUNTI
Docente
SCHIMPERNA GIULIO FERNANDO (titolare) - 6 CFU
LISINI STEFANO - 3 CFU
Prerequisiti
Le conoscenze di base fornite dai corsi di Analisi Matematica 1 e Algebra lineare, cioè: funzioni elementari, elementi di base del calcolo differenziale e integrale in una variabile, elementi di base relativi agli spazi vettoriali e al calcolo matriciale.
Obiettivi formativi
Il corso si propone di far acquisire la conoscenza di base degli argomenti di Analisi Matematica che sono la prosecuzione naturale dei contenuti dell’insegnamento di Analisi Matematica 1, quindi essenzialmente nel campo del calcolo differenziale e integrale in più variabili. Nell’ambito di questi argomenti lo studente dovrà essere in grado sia di conoscere gli aspetti teorici sia di saper scegliere e utilizzare le principali tecniche analitiche necessarie per la risoluzione dei problemi proposti.
Programma e contenuti
Verranno considerati gli aspetti teorici e le tecniche analitiche fondamentali relative alle funzioni tra spazi euclidei. In particolare, saranno oggetto del corso i seguenti argomenti: struttura metrica e topologica degli spazi euclidei; derivate parziali, differenziale, gradiente e matrice jacobiana; formula di Taylor e Teorema del valor medio; estremi liberi e vincolati; funzioni definite implicitamente e risultati di invertibilità locale; teoria della misura secondo Peano-Jordan, integrazione secondo Riemann in più variabili; teoremi di riduzione e di cambiamento di variabile negli integrali multipli; integrali impropri; superficie regolari, integrazione su linee e superficie, forme differenziali, successioni e serie di funzioni, convergenza puntuale e uniforme.

Nota: il livello di approfondimento degli argomenti sarà differenziato per gli studenti dell'insegnamento di Complementi di Analisi Matematica I (Corso di laurea in Fisica) che mutuano da questo insegnamento 6 CFU.
Metodi didattici
Le ore di insegnamento saranno svolte prevalentemente nella modalità tradizionale di lezione frontale. Quando possibile, all'interno di queste verrà dedicato spazio per lo svolgimento assistito di esercitazioni da parte degli studenti. L'attività di tutorato intende offrire un ulteriore supporto all'acquisizione della manualità di base riguardo alle esercitazioni.
Testi di riferimento
I principali argomenti sono trattati sui libri:
a) “Analisi Matematica 1 e 2”, di M. Bramanti, C.D. Pagani e S. Salsa (Zanichelli)
b) “Analisi matematica 1 e 2”, di C.D. Pagani e S. Salsa (Zanichelli).
I testi indicati in (b) sono più ampi e approfonditi rispetto a quelli in (a).

Letture di approfondimento:
“Lezioni di Analisi Matematica vol. 1 e vol. 2”, di Giovanni Prodi (Boringhieri).
Il volume 1, in particolare, contiene l’esposizione del concetto di limite nell’ambito degli spazi metrici e topologici.

Alcuni possibili riferimenti per la parte di esercizi:
'Esercizi di Analisi Matematica 2' di S. Salsa e A. Squellati (Zanichelli, 2011)
"Esercitazioni di Analisi Matematica Due" (prima e seconda parte) di P. Marcellini e C. Sbordone (Zanichelli, 2017)
Modalità verifica apprendimento
L’esame è formato da una prova scritta e da una prova orale. La prima mira prevalentemente a verificare il livello di acquisizione delle principali tecniche analitiche e di calcolo esposte nel corso, assieme alla capacità di analisi di un problema matematico. Nella prova orale (cui si accede a seconda del voto riportato nella prova scritta) si cerca di approfondire la verifica dell’acquisizione del quadro teorico di riferimento nel quale sono collocati i principali argomenti trattati.
Altre informazioni
Ulteriori informazioni sul programma e sulle modalità d'esame verranno illustrate in una pagina web dedicata al corso.
Obiettivi Agenda 2030 per lo sviluppo sostenibile