

Anno Accademico 2022/2023

ADVANCED NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS	
Enrollment year	2022/2023
Academic year	2022/2023
Regulations	DM270
Academic discipline	MAT/08 (NUMERICAL ANALYSIS)
Department	DEPARTMENT OF MATHEMATICS "FELICE CASORATI"
Course	MATHEMATICS
Curriculum	PERCORSO COMUNE
Year of study	1°
Period	2nd semester (01/03/2023 - 09/06/2023)
ECTS	6
Lesson hours	48 lesson hours
Language	Italian
Activity type	ORAL TEST
Teacher	MOIOLA ANDREA (titolare) - 3 ECTS MARCATI CARLO - 3 ECTS
Prerequisites	Basic knowledge of numerical analysis, mathematical analysis, partial differential equations. A basic knowledge of Matlab, python or similar languages is advisable. It is preferable to have attended, or to attend during the same term, the Finite Elements class.
Learning outcomes	The course aims at studying in detail some modern methods for the numerical approximation of partial differential equation that are relevant for applications. The methods under consideration will be analysed theoretically and implemented numerically.
Course contents	The course will focus on some advanced techniques for the solution of partial differential equations (PDEs) that complement and extend the programme of the Finite Element course.

	Some examples are: boundary element method (BEM), neural and operator network approximations for PDEs, tensor compression methods, isogeometric analysis (IGA), virtual element method (VEM), discontinuous Galerkin (DG) method, immersed boundary method (IBM), domain decomposition (DD), eigenvalue problems, space-time Galerkin methods, preconditioning techniques.
Teaching methods	Classroom lectures, tutorials in the computer lab, study of research papers, seminars. The topics presented may vary according to the students' preferences.
Reccomended or required readings	Notes prepared by the lecturer. Scientific papers provided by the lecturer.
Assessment methods	Oral exam and report. Every student will be able to implement the numerical methods presented during the course, focusing on some extensions or applications, or studying in details some theoretical aspects, also using the most recent scientific literature suggested by the lecturers.
Further information	
Sustainable development goals - Agenda 2030	<u>\$Ibl_legenda_sviluppo_sostenibile_</u>